ACAD-27 a)	Shri Ramdeobaba College of Engineering and Management,Nagpur -440013	Iss. No.: 01, Rev. No.: 00
Ref. Clause(s): 9.1	Date of Rev: $01 / 01 / 2018$	
Separtment: EC	Semester : III Section: A \& B Course Code: ECT253 Course Name: Signals and Systems	Page: 01/01
Programme: BE (EC)	Class Test: $\mathbf{1}$	Date of Exam: $\mathbf{3 0 - 1 2 - 2 0 2 1}$
Max Marks: $\mathbf{1 5}$	Session: 2021-22	Time: $\mathbf{1 ~ H r})$ $\mathbf{1 1 . 0 0} \mathbf{- 1 2 . 0 0}$ noon

Instructions:

1. All the questions are compulsory. Question Paper Consists of Two Pages.
2. Paper is to be solved using Pen and Paper Compulsorily. Student must write the Name, Roll No. and Section on top of each sheet of paper he/she is writing the answers.
3. At the end of the exam Single pdf of handwritten answers is to be uploaded by the student in Google Classroom and Turn-in.

Question No.	Questions	Marks	CO	EO
1	Given, $\quad \boldsymbol{x}(\boldsymbol{t})=\left\{\begin{array}{lr}(\boldsymbol{t}+\mathbf{1}), & -\mathbf{1} \leq \boldsymbol{t} \leq \mathbf{0} \\ \mathbf{1}, & \mathbf{0}<t \leq 2 \\ (-\boldsymbol{t}+\mathbf{3}), & \mathbf{2}<t \leq 3 \\ \mathbf{0}, & \text { Otherwise }\end{array}\right.$ Sketch the following signals a) $x(t)$ b) $x\left(\frac{1}{3} t+1\right)$	2	CO1	L4
2	Sketch the following Signals a) $x(t)=r(t)-r(t-1)-u(t-4)$ b) $x(t)=r(t) u(3-t)$	2	CO1	L3
3	a) Compute the energy of the following signal $x(t)=\cos (10 \pi t) u(t) u(2-t)$ b) Compute the RMS value of the following signals $x(t)=e^{j \alpha t} \cos (\omega t)$ c) Find the fundamental period of the following signal $x(t)=2 \sin (3 t+1)+3 \sin (4 t-1)$	3	CO1	L4
4	Check whether the following system is Linear/Non-Linear and Time-invariant/Time-variant $y(t)=x(t) \cos (\omega t)$	2	CO1	L2

5	a) The input, impulse response and the output of DT-LTI system are given as $x[n]=\left\{\frac{1}{4}, 5\right\} ; h[n]=\{1, \underset{\sim}{X}, 3\}$; and $y[n]=\{1,4,12,16,15\}$ respectively. Find the value of X. b) Compute $y[n]=x[n] * h[n]$, where $\begin{aligned} & x[n]=u[n]-u[n-3] \\ & h[n]=\delta[n]+2 \delta[n-1]+3 \delta[n-2] \end{aligned}$	2 2	$\mathrm{CO} 1$ CO1	L2
6	The impulse response of the LTI Systems are given below. Determine whether the system is causal and stable. a) $\boldsymbol{h}(\boldsymbol{n})=(2)^{n} \boldsymbol{u}(3-n)$ b) $h(t)=e^{2 t} u(t+50)$	2	CO4	L5

ACAD-27 a)	Shri Ramdeobaba College of Engineering and Management,Nagpur -440013	Iss. No.: 01, Rev. No.: 00
Ref. Clause(s): 9.1		Date of Rev: 01/01/2018
Department: EC	Semester : III Shift: I and II Course Code: ECT252 Course Name: Digital System Design	Page: 01/01
Programme: BE	Test: 1 / 2	Date of Exam: 29/12/2021
Max Marks: 15	Session: 2021-22	Time: 1 hour

Instruction: Questions carry marks as indicated.

Question No.	Questions	Marks	CO	EO
1	Design a digital circuit using 4-variable K-Map which will give an output as "logic 1 " if the input is prime as well as odd.	8	CO 2	L5
2	Solve the following using k-map. $f(A, B, C, D)=\prod M(0,2,8,9,10) . D(5,12,13,14,15)$ OR Design the following circuit using Verilog. Also draw its RTL schematic. $\mathrm{Y}=\left(\mathrm{AB}^{\prime}+\mathrm{CD}\right) \oplus(\mathrm{ABC})$	7 7	$\begin{gathered} \mathrm{CO} 1 \\ \\ \\ \mathrm{CO} 1, \\ \mathrm{CO} 2 \end{gathered}$	L3

ACAD-27 a)	Shri Ramdeobaba College of Engineering and ManagementNagpur -440013	Iss. No.: 01, Rev. No.: 00
Ref. Clause(s): 9.1		Date of Rev: 01/01/2018
Department: EC	Semester: III Section A \& B Course Code: ECT 251	Page: 01/01
Programme: BE	Test:2	Date of Exam: 18/02/2022
Max Marks: 15	Session: 2021-22	Time: $2 \mathrm{pm}-3 \mathrm{pm}$

Course outcomes

At the end of this course students will demonstrate the ability to

1. Summarize fundamentals of diodes and transistors.
2. Understand fundamentals of MOS technology and its properties.
3. Explain digital circuits using CMOS logic.
4. Apply biasing techniques to the amplifiers.
5. Analyze low frequency behaviour of BJT amplifiers.

Instructions: All questions are compulsory. Assume suitable data if required. Explain the answers with relevant figures wherever needed.

Question

No.
Questions
Marks CO EO
1 Design a fixed biased circuit using a silicon transistor having $\beta=100$.
3 $V C C=10 \mathrm{~V}$ and dc conditions are to be $V C E=5 V$ and $I C=5 \mathrm{~mA}$.

2 Transistor used in the circuit is silicon type Q1 (100A/A). Evaluate current gain AI, and voltage gain AV. Assume $h f e=75$, hie $=4.37 \mathrm{~K} \Omega$, hoe $=$ hre $=0$.

3 A n- channel and p- channel JFET devices are available in the $3 \quad 1 \quad$ L3 laboratory for an amplifier design. Which one will you prefer so as to have better speed of operation and why?

What do you mean by body effect in MOSFET devices?
5 Realize the following function using CMOS logic.

$$
\mathrm{F}=\overline{(\mathrm{A} \cdot(\overline{\overline{\mathrm{~B}} \cdot(\mathrm{C}+\mathrm{D}))})}
$$

\(\left.$$
\begin{array}{|l|c|l|}\hline \text { ACAD-27 a) } & \text { Shri Ramdeobaba College of Engineering and } \\
\text { Ref. Clause(s): 9.1 } & \begin{array}{l}\text { ManagementNagpur -440013 }\end{array} & \begin{array}{l}\text { No.: 01, } \\
\text { Rev. No.: 00 }\end{array} \\
\hline \text { Department: EC } & \begin{array}{l}\text { Semester: III Section A \& B } \\
\text { 01/01/2018 }\end{array}
$$

\hline Course Code: ECT251

Course Name: Electronics Devices\end{array}\right]\)| Page: 01/01 |
| :--- |
| Max Marks: 15 |

Course outcomes
At the end of this course students will demonstrate the ability to

1. Summarize fundamentals of diodes and transistors.
2. Understand fundamentals of MOS technology and its properties.
3. Explain digital circuits using CMOS logic.
4. Apply biasing techniques to the amplifiers.
5. Analyze low frequency behaviour of BJT amplifiers.

Instructions: All questions are compulsory. Assume suitable data wherever needed.

Question No.	Questions	Marks	CO	EO
1	Analyze the circuit of Full wave bridge rectifier.	4	1	L4
2	For the above circuit, Evaluate the maximum and minimum values of Zener diode current.	4	1	L5
3	Estimate the collector current and emitter current of a transistor with $\alpha=0.99$ and $\mathrm{I}_{\text {CEO }}=100 \mu \mathrm{~A}$ when the base current is $10 \mu \mathrm{~A}$.	4	1	L3
4	Illustrates Current Components in BJT with neat diagram.	3	1	L3

$\begin{array}{\|l\|} \hline \text { ACAD-27 a) } \\ \hline \text { Ref. Clause(s): } 9.1 \\ \hline \end{array}$		Shri Ramdeobaba College of Engineering and Management,Nagpur 440013	Iss. No.: 01, Rev. No.: 00 Date of Rev: 01/01/2018		
Department: EC		Semester : IV Section: A \& B Course Code: ECT259 Course: Probability Theory \& Stochastic Processe	Page: 01/01		
$\begin{array}{\|l} \hline \begin{array}{l} \text { Programme: } \mathbf{B E} \\ (\mathbf{E C}) \end{array} \\ \hline \end{array}$		Class Test: 1	$\begin{aligned} & \text { Date of Exam: } \\ & \text { 20-05-2022 } \end{aligned}$		
Max Marks: 15		Session: 2021-22	Time: (1 Hr)$11.00 \mathrm{am}-12.00$ noon		
Que No.	Questions		Marks	CO	EO
Q. 1	A tow indepe availab probab needed	has two doctors X and Y operat dently. If the probability that doctor X is 0.9 and that for Y is 0.8 , what is ity that at least one doctor is available wh $=0.98$	2	CO1	L2
Q. 2	The od three respec review	s that a movie will be favourably reviewed dependent critics are 5 to 2,4 to 3 and 3 ely. What is the probability that of the th a majority will be favourable?	${ }^{2} 60$	$\begin{aligned} & \text { CO1 } \\ & 93 \end{aligned}$	L2
Q. 3	The ch of a co that th if A, B 0.8 re introdu appoin	nces of A, B and C becoming the General Man pany are in the ratio $4: 2: 3$. The probabil bonus scheme will be introduced in the comp and C become General Manager are $0.3,0.7$ pectively. If the bonus scheme has ed, what is the probability that A has d as General Manager?	4	CO5	L4
Q. 4	A R.V. i) $\mathrm{E}[\mathrm{X}]$	has the PDF $f(x)= \begin{cases}2 x, & 0<x<1 \\ 0, & \text { otherwise }\end{cases}$ $\frac{2}{3}$ ii) $P\left(X>\frac{3}{4} / X>\frac{1}{2}\right)=$ $=0.58$	2	CO5	L3
Q. 5	If X an $P(x$ Evalua a) P b) P c) P	Y are two random variables with joint PMF as $=k(2 x+3 y), \quad x=0,1,2 . \quad \text { and } \quad y=1,2,3$ the marginal and conditional distributions for $\begin{aligned} & =2, Y \leq 2)=17 / 72=0.2361 \\ & \leq 1 / Y \leq 2)=22 / 39=0.5641 \\ & =0 / Y=2)=1 / 4=0.25 \end{aligned}$	3	CO5	L5
Q. 6	The pr probab times.	bability of man hitting a target is $\frac{1}{4}$. Deduce ity of hitting the target exactly twice, if he fire $=0.31146$	2	CO5	L3

8.1

$$
\begin{aligned}
P(\text { at least ta a ailable }) & =P(x) \cdot P(\bar{p})+P(\bar{x}) \cdot P(y)+P(x) P(y) \\
& =0.9 \times 0.2+0.1 \times 0.8+0.8 \times 0.9 \\
& =0.98=1-P(\vec{x}) \cdot P(\tilde{p})
\end{aligned}
$$

$$
\text { Q.2. } \begin{aligned}
P(A) & =\frac{5}{7}, P(B)=\frac{4}{7}, P(C)=\frac{3}{7} \\
P(A) & =\frac{2}{7}, P(B)=\frac{3}{7}, P(\bar{C})=\frac{4}{7} \\
\therefore \text { Red probe } & =P(A) P(B) P(\bar{C})+P(A) P(B) P(C)+P(A) P(B) P(C)+P(A) P(B) P(C) \\
& =\frac{5}{7} \frac{4}{7} \frac{4}{7}+\frac{5}{7} \cdot \frac{3}{7} \frac{3}{7}+\frac{2}{7} \frac{4}{7} \frac{3}{7}+\frac{5}{7} \cdot \frac{4}{7} \frac{3}{7}=\frac{209}{343}
\end{aligned}
$$

Q. 3 No of passible cases $4+2+3=9$.

$$
P(A)=\frac{4}{9}, \quad P(B)=\frac{2}{9}, \quad P(C)=\frac{3}{9}, \quad P(A)+P(B)+P(C)=1
$$

let $D=$ event that Bonus scheme has been introduced.

$$
\begin{aligned}
& P(D / A)=0.3, \quad P(D / B)=0.7, \quad P(D / C)=0.8 \text {. } \\
& \therefore P(D)=P(A) \cdot P(D / A)+P(B) \cdot P(D / B)+P(C) \cdot P(D / C) \\
& =\frac{4}{9} \cdot 0.3+\frac{2}{9} \cdot 0.7+\frac{3}{9} \cdot 0.8=\frac{5}{9} \\
& \therefore P \text { (Aha been appointed as G.M. } \text { Given that Bonus scheme has bee } \\
& \text { (A Avers thee Bonspons scheme has hr been introduced.) }= \\
& \begin{aligned}
&=P(A / D)=\frac{P(A) \cdot P(D / A)}{P(D)} \\
&==\frac{4}{9} \times 0.3 \\
& 5
\end{aligned} \\
& =\frac{\frac{4}{9} \times 0.3}{59}=\frac{1.2}{5}=\frac{6}{25}
\end{aligned}
$$

Q.4 i] $\left.E[x]=\int_{0}^{1} x \cdot f(x) \cdot d x=\int_{0}^{1} \cdot(2 x) d x=\frac{2 \cdot\left[x^{3}\right.}{3}\right]_{0}^{1}=\frac{2}{3}, \frac{1}{2}$

$$
\begin{aligned}
& \text { Q. } \left.4] \equiv[x]=\int_{0} x \cdot f(x) \cdot d x=\int_{0} x(2 x) d x=\frac{2 \cdot 2}{3}\right]_{0}=\frac{2}{3} \\
& \text { i] } 1\left(x \gg \frac{3}{4} / x>\frac{1}{2}\right)=\frac{P\left(x>\frac{3}{4}\right)\left(P(x) \frac{1}{2}\right)}{P\left(x>\frac{1}{2}\right)}=\frac{\left.P(x) \frac{3}{4}\right)}{P\left(x>\frac{1}{2}\right)}=\frac{\int_{34}^{2 x \cdot d x}}{\int_{1 / 2}^{2} x d x=\frac{1-(0.75)^{2}}{1-(0.5)^{2}}=\frac{0.4375}{0.7} 5}=\frac{7}{1 / 2}=0.5833
\end{aligned}
$$

Q. 5	1	2	3	
0	$3 k$	$6 k$	$9 k$	$18 k$

ACAD-27 a)	Shri Ramdeobaba College of Engineering and Management,Nagpur -440013	Iss. No.: 01, Rev. No.: 00
Ref. Clause(s): 9.1	Date of Rev: $01 / 01 / 2018$	
Department: EC	Semert : III Section: A \& B Course Code: ECT253 Course Name: Signals and Systems	Page: 01/01
Programme: BE (EC)	Class Test: 2	Date of Exam: $\mathbf{1 7 - 0 2 - 2 0 2 2}$
Max Marks: $\mathbf{1 5}$	Session: 2021-22	Time: (1 Hr) $\mathbf{1 1 . 0 0} \mathbf{- 1 2 . 0 0}$ noon

Instructions:

1. All the questions are compulsory.
2. Paper is to be solved using Pen and Paper Compulsorily. Student must write the Name, Roll No. and Section on top of each sheet of paper he/she is writing the answers.
3. At the end of the exam Single pdf of handwritten answers is to be uploaded by the student in Google Classroom and Turn-in.

Question No.	Questions	Marks	CO	EO
Q. 1	CT-LTI system is described as $\frac{d^{2} y(t)}{d t^{2}}+11 \frac{d y(t)}{d t}+30 y(t)=x(t)+\frac{d x(t)}{d t}$ Determine the impulse response $h(t)$ if the system is both stable and causal.	3	$\begin{gathered} \mathrm{CO} 2, \\ \mathrm{CO} 4 \end{gathered}$	L3
Q. 2	CT-LTI system is described as $\frac{d^{2} y(t)}{d t^{2}}-\frac{d y(t)}{d t}-2 y(t)=x(t)$ Obtain the transfer function of the system and Draw its Pole - Zero diagram.	2	$\begin{gathered} \mathrm{CO} 2, \\ \mathrm{CO} 4 \end{gathered}$	L2
Q. 3	Find the impulse response $h[n]$ of the system described by the difference equation $y[n]-4 y[n-1]+3 y[n-2]=x[n]+2 x[n-1]$ using z-transform.	4	CO3	L4
Q. 4	A causal LTI system is observed to produce an output $y(t)=\left(e^{-4 t}-e^{-5 t}\right) u(t) \quad$ for the input $x(t)=e^{-5 t} u(t)$. Obtain the Frequency response of this system. Plot its Magnitude and Phase Spectrum.	4	Co5	L5
Q. 5	i. Compute DTFT of the signal $x[n]=\delta[n+2]-\delta[n-2]$ ii. Deduce Inverse DTFT of the following $X(j \omega)=1-e^{-j \omega}+2 e^{-j 2 \omega}+2 e^{-j 3 \omega}$	1 1	$\operatorname{CO5}$ CO	L2 L3

ACAD-27 a)	Shri Ramdeobaba College of Engineering and Management, Nagpur -440013	Iss. No.: 01, Rev. No.: 00
Ref. Clause(s): 9.1		Date of Rev: 01/01/2018
Department: EC	Semester : III Shift: I and II Course Code: ECT252 Course Name: Digital System Design	Page: 01/01
Programme: BE	Test: 2	Date of Exam: 16/02/2022
Max Marks: 15	Session: 2021-22	Time: 1 hour

Instruction: Questions carry marks as indicated.

Question No.	Questions	Marks	CO	EO
1	Write a Verilog code for a digital circuit described by the functional block diagram given below. $\mathrm{Q}_{\mathrm{A}}, \mathrm{Q}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{C}}, \mathrm{Q}_{\mathrm{D}}$ are the outputs. A and B are the inputs. Additionally, S_{1}, S_{2} are set inputs and R_{1}, R_{2} are reset inputs of mod-2 and mod-5 counters respectively. Output Q_{A} can be connected externally with input B cascading the two counters. Make a provision for cascading the two counters internally depending on an additional input C .	10	CO 2	L6
2	Implement the half adder using PAL and PLA. OR Explain Totem Pole Logic of TTL NAND gate with diagram.	05 05	$\begin{aligned} & \mathrm{CO} 2 \\ & \mathrm{CO} 3 \\ & \\ & \mathrm{CO} 4 \end{aligned}$	L2

ACAD-27 a)	Shri Ramdeobaba College of Engineering and Management, Nagpur -440013	Iss. No.: 01, Rev. No.: 00
Ref. Clause(s): 9.1		Date of Rev: 01/01/2018
Department: EC	Semester : III Shift: I \& II Course Code: MAT-255 Course Name: Mathematics-III	Page: 01/01
Programme: BE	Test: 1	Date of Exam: 29/12/2021
Max Marks: 15	Session: 2020-21	Time: 1 Hr.

Instructions: All the questions are compulsory.

Question No.	Questions	Marks	CO	EO
1	Given that $L[\sin \sqrt{t}]=\frac{\sqrt{\pi}}{2 s^{3 / 2}} e^{-1 / 4 s}$ prove that, $L\left[\frac{\cos \sqrt{t}}{\sqrt{t}}\right]=\left(\frac{\pi}{s}\right)^{1 / 2} e^{-1 / 4 s}$.	3	CO3	
2	Show that the Laplace transform of square wave, $f(t)=\left\{\begin{array}{c}k, 0<t<a \\ -k, a<t<2 a\end{array}\right.$, $\mathrm{T}=2 \mathrm{a}$ is $F(s)=\frac{k}{s} \tanh \left(\frac{a s}{2}\right)$.	4	CO3	
3	The initial value problem governing the current ' i ' flowing in series $\mathrm{R}-\mathrm{L}$ circuit when a voltage ' t ' is applied is given by, $i R+L \frac{d i}{d t}=t ; t \geq 0 ; i(0)=0$ where R and L are constants. Find the current at any time t using Laplace transform.	4	CO3	
4	Find Z-transform of the following sequences a) $f_{n}=\left\{\begin{array}{c}2, n=0,2,4, \ldots \ldots, 2 k, \ldots \\ 1, n=1,3,5, \ldots \ldots, 2 k+1, \ldots\end{array}\right.$ b) $f_{n}=e^{(n-2)}$	4	CO3	

ACAD-27 a)	Shri Ramdeobaba College of Engineering and Management,Nagpur -440013	$\begin{array}{\|l} \hline \text { Iss. No.: 01, } \\ \text { Rev. No.: } 00 \end{array}$
Ref. Clause(s): 9.1		$\begin{aligned} & \text { Date of Rev: } \\ & \text { 01/01/2018 } \\ & \hline \end{aligned}$
Department: EC	Semester : III Shift: I \& II Course Code: MAT-255 Course Name: Mathematics-III	Page: 01/01
Programme: BE	Test: II	Date of Exam: 16/02/2022
Max Marks: 15	Session: 2021-22	Time: 1 Hr.

Instructions: All the questions are compulsory.
Use of non-programmable calculators is allowed

Question No.	Questions	Marks	CO
1	a) Solve the difference equation using Z- transform $y_{n+2}-3 y_{n+1}+2 y_{n}=0, y_{0}=$ $-1, y_{1}=2$.	3	CO3
2	Find the general solution of the partial differential equation $\left(x+y^{2}\right) p+y q=z+$ x^{2}.	3	CO1
3	Find the general solution of given partial differential equation $2 \frac{\partial^{2} z}{\partial x^{2}}-3 \frac{\partial^{2} z}{\partial x \partial y}+\frac{\partial^{2} z}{\partial y^{2}}=$ $\sin (x-2 y)$	3	CO1
4	a) Using Cauchy-Riemann equations, show that $\|z\|^{2}$ and \bar{z} are not analytic at any point. b) If $f(z)$ is analytic in a domain D and $\|f(z)\|$ is a non-zero constant in D, then show that $f(z)$ is constant in D.	3	CO2

